Table of Contents

INTRODUCTION	7
About this Book	7
Today's Challenge	8
Thoughts on Teaching Math	10
Practical Advice Will our Students be Prengrad?	13
Tips for Success in Math	10
MATH CURRICULUM SUMMARY	18
Sixth Grade	18
Seventh Grade	19
Eignin Grade	20
SIXTH GRADE ARITHMETIC	21
The year for strengthening skills	21
The World of Numbers	21
Mental Math	$\frac{21}{21}$
Math Tricks	21
New Multiplication Facts	21
Casting Out Nines Exponents and Roots	21
Divisibility Rules	22
Prime Factorization	23
LCMs and GCFs	23
Common denominators for	23
Division and Fractions	23
Think of division as a fraction	23
Making the divisor easier	23
Long Division Vocabulary	23
Normal long division	24
Don't leave a remainder	24
How to know if a digit in the answer is too small?	24
Division problems made easier by rounding	24 25
Short Division	26
Checking Answers	26
Fractions	26
Fractions aren't just pizza! Fractions are part of the whole	26
Reducing fractions	27
Fractions are division	27
Mixed numbers	27
Compound Fractions	$\frac{27}{28}$
Decimals	28
Review from Fifth Grade	28
Fraction to Decimal Conversions	28
The trick for 11ths, and 20ths	29
Decimal to Fraction Conversions	29
Repeating Decimals	29
Determining number of digits under the repeat bar Division Problems with Repeating Decimals	29
Converting Repeating Decimals to Fractions	30
9, 99, etc. in the denominator	30
90, 990, etc. in the denominator	30
Rusiness Math Main Lesson	31
A Few Thoughts on this Unit	31
Keys to Success for Percents	31
Don't rely on pictures	31
Percent to Fraction Conversions Determining a Certain Percent of a Given Number	32 32
Looking at it as a division problem	32
Converting to a fraction and multiplying	32

Converting to a decimal and multiplying	32
Determining a Percentage	32
Percent Increase and Decrease Problems	33
Increasing or decreasing a number by a certain perce	ent 33
Calculating the percentage of increase or decrease	33
Interest	33
Comparing simple interest and compound interest	33
Calculating simple interest	33
Discount and Loss	34
Rate of Pay	34
The Unitary Method and Unit Cost	34
Business Formulas	35
Rate of pav	35
Simple interest	35
Price after Tax	35
Discount Price	35
Graphing	35
Line graphs	35
A good page for a main lesson book	35
Other Topics	36
US Standard Tools	36
Metric System	36
Definitions	36
Developing a sense for metric	36
General word problems	37
Rate of speed	37
A Key Strategy	37
Ratios	37
Comparing ratios and fractions	37
Statistics	38
Median	- 30 - 38
Mode	38
Significant Digits	38
Currency Exchange Rates	39
SIXTH GRADE GEOMETRY	40
	40
Ine Basics Basic Geometry Terminology	40
Angle Measure	40
Polygon Terminology	40
Types of triangles	40
Types of quadrilaterals	40
Polygons with more than four sides	40
Circle Terminology The Three Dimensions	41
Geometric Drawing	41
Tips for doing Geometric Drawings	41
Copying a Line Segment	41
Copying an Angle	42
Bisecting a Line Segment	42
Bisecting an Angle	42
A Perpendicular Line through a Point on that Line	43
Constructing a Parallel Line	43
Dividing a Line Segment into Equal Parts	44
Constructing a Triangle, Given One Side	44
Constructing a Square, Given One Side	44
Constructing a Hexagon, Inside a Given Circle	45
Constructing a Square, Inside a Given Circle	45
Constructing a Triangle, Inside a Given Circle	40 46
The 12-Division of the Circle	46
	10
The 24-Division of the Circle	46

Spingle	17
The central idea here	47
The Equipropular Spiral	47
Construction	47
Interesting questions	47
Geometric Progressions and the Equiangular Spiral	47
Other Ways to Construct an Equiangular Spiral	47
Formed with inscribed regular polygons	47
Joining the quarter-points of the square's sides	48
The Spiral of Archimedes	48
Advanced Constructions	49
Rotations of Circles	49
The Limaçon and the Cardioid	49
The Hierarchy of Quadrilaterals	49
Knots and Interpenetrating polygons	49
The 24-Division with all its Diagonals	49
The King's Crown	49
Area	50
Area of square, rectangle, and right triangle	50
SEVENTH GRADE ARITHMETIC	51
The importance of seventh grade	51
The order of topics	51
The World of Numbers	51
Math Tricks	51
Divisibility Rules	51
Roots	52
Maasuramant	52
Review	52
The Metric System	52
The metric stairs	52
Conversions in a Given System	52
Percents	53
Finding the Base	53
Easier ones	53
Thinking of inverses	53
Trickier ones	53
Strange Percents	53
Compound interest	54
Calculating the Percentage of Increase or Decrease	54
Ratios	55
Key Ideas	55
Ratios have no units	55
Ratios of more than two things	55
The Three Thoughts of a Ratio	22
The Two Forms for a Ratio	56
Whole number form	56
The Two Theorem 5 a Datio	50 56
Paginroods of Paties	56
Proportion of the Whole	57
Similar Figures	57
Shadow problems	58
Direct and Inverse Proportions	58
Speed time and distance	58
String length and frequency	58
The law of the lever	58
A New Type of Number: Irrational Numbers	59
The Ratio in a Square	59
Guessing the ratio	59
The Great Pythagorean Crisis	59
The Four Ratios of a Square	59
Practice calculating the diagonal or the side	59
π - The Ratio in a Circle	59
The impossibility of measuring	59
Archimedes method for calculating π	59
Decimal approximations for π	60
Fractional approximations for π	60
The Four Ratios of π .	60
Practice calculating the circumference or diameter	60
Repeating Decimals	01
1 wo laws of repeating decimals	01 61
The Square Doot Algorithm	61
The square Root Algorithm	01

Word Problems	62
Measurement Word Problems	62
Rate Problems	62
Compound rate problems	62 62
	(2
SEVENTH GRADE ALGEBRA	63
Basic Goals The Importance of Form	63
History of Algebra	63
Terminology	63
Formulas	64
Gauss's Formula	64
Cost of Renting a Car Calilada Law of Falling Padias	64 64
Fuclid's Perfect Number Formula	65
Using Euclid's formula	65
Positive and Negative Numbers	65
A Careful Introduction	65
Combining Positive & Negative Numbers	65
Multiplication and Division Rules	66
Simplifying Expressions	66
Law of Any Order	66
Combining like terms	66
Fractions/decimals as coefficients & constants	66
Equations	66
An Equation is a Puzzle	66 66
Solving by Guess and Check	67
The Golden Rule of Equations	67
Solving Equations by Balancing	67
Algebraic Word Problems	68
SEVENTH GRADE GEOMETRY	69
Area	60
The Shear and Stretch	69
Area of a parallelogram	69
Area of a non-right triangle	69
Geometric Drawing	69
Triangle Constructions	70
555 5AS	70 70
ASA	70
SSA	71
AAS	71
Euclidean Constructions	72
The three rules of the game	72
Various Methods for doing Constructions	72
Constructions with compass and straightedge	72
Measurement constructions	72
The Guess and Check Method	72
Approximate Constructions	72
Geometric Division of a 12-gon	/ 3 73
Geometric division of a 12-gon	73
Star Patterns with Geometric Division	73
The Pentagon and the Golden Ratio	74
Constructing a Pentagon	74
Places where the Pentagon Appears	74
The Golden Ratio Φ	75 75
The Fibonacci Sequence	75
The Golden Rectangle	76
The Rectangle of Whirling Squares	76
The Golden Triangle and its Spiral	76
Angle Theorems and Proofs	//
I neorems from 2 Parallel Lines and a Transversal Corresponding angles are congruent	// רר
Alternate interior angles are congruent	77
Same side interior angles add to 180°	77
The Angles in a Triangle add to180°	77
Cutting Out Angles	77
The Half-wheel Theorem	11

The Angles in Polygons other than Triangles Angle Puzzles Theorem of Thales Theorem of Morley
Pythagorean Theorem
Visual Proofs
A cut-out puzzle
The case of the isosceles right triangle
The case of the 3-4-5 triangle
Pythagorean Triples
Pythagoras's formula
Plato's formula
The Arabian formula
The primitive Pythagorean Triples
Calculating Missing Sides of Triangles
Other Topics

 $\begin{array}{c} \textbf{82} \\ \textbf{82} \\ \textbf{82} \\ \textbf{82} \\ \textbf{83} \\ \textbf{83} \\ \textbf{83} \\ \textbf{84} \\ \textbf{86} \\ \textbf{87} \\ \textbf{78} \\ \textbf{88} \\ \textbf{88} \\ \textbf{899} \\ \textbf{990} \\$

EIGHTH GRADE ARITHMETIC

The year before high school
The order of topics
Main Lessons and Priorities
Number Bases
Ancient Number Systems
Expanded Notation
Scientific Notation
Base-Eight, Octal
Base-Five
Base-Sixteen, Hexadecimal
Base-Two, Binary
Arithmetic in Various Bases
Multiplication tables
The climax of the unit
Multiplication with zeroes
Converting between Binary and Hexadecimal
The World of Numbers
The Square Root Algorithm without zeroes
The Pythagorean Theorem
The Hypotenuse Formula
The Leg Formula
Finding the missing sides of right triangles
Percents and Growth
Calculators
Four ways to Find the Base
The Even Multiple Method
The Decimal Method
The Algebra Method
Inerago/Decrease Broblems
Devording a percent increase problem
Rewording a percent decrease problem
Calculating the Percentage of Increase or Decrease
Review seventh grade
Calculating the Starting Point
Exponential and Linear Growth
The Exponential Growth Formula
The Exponential Growth Table
Dramatic results
Depreciation
The Rule of 72
Dimensional Analysis
A Few Thoughts on this Unit
Calculators
Conversion table
Accuracy
Showing work
Two Methods for doing Unit Conversion Problems
Using the Intuitive Approach
Using the Chain Method
Converting between the U.S. and Metric System
Converting Units for Rates
Converting units of speed
Unit cost
Inverse ratios and reciprocals
Converting Areas and Volumes
Grains of rice problem

Density	95 07
Shortcuts for Solving Proportions	97 97
Moving along diagonals	97 07
Word Problems that Use Proportions	97
Recipe problems	97 98
Map scale problems	98
Rate problems	98
EIGHTH GRADE ALGEBKA	99 00
Order of Operations	99 99
Evaluating Expressions	99
Fractions and Negatives	100
Equations	100
Distributive Property	100
Equations with Fractional Constants and Coefficients	101
Cross Multiplying	101
Strange Solutions Equations with a solution of $X = 0$	101
Equations where any value for X will work	101
Equations with no solution Converting Repeating Decimals into Fractions	101 102
EIGHTH GRADE COMPUTERS	103
Computer memory and ASCII code	103
Binary Codes using Flags A Computer Bit as a Switch	103
One Byte of Memory	103
Decoding Strings of Binary Code Computer Algorithms	103
Writing Familiar Algorithms	104
An algorithm for addition	104
Examples of New Algorithms	104
The prime number algorithm The square root algorithm – without zeroes	104 104
EIGHTH GRADE GEOMETRY	105
Mensuration (Areas and Volumes)	105
Beware of Formulas!	105
Von Baravalle's proof	105
Area of a Trapezoid Heron's Formula for the Area of a Triangle	106
Calculating the Area of Four Types of Triangles	106
A right triangle An isosceles triangle	106
An equilateral triangle	106
A scalene triangle Area of a Circle	106
Proof of the formula $A = \pi \cdot r^2$	107
Archimedes' version of the area of a circle Portions of Circles	107
Finding the length of an arc of a circle	107
The Basics of Volume	107
Cubic Measurement	108
Don't give many formulas	108
Volumes of Prisms and Cylinders	108
3-D shear and stretch for finding volumes	108
Volumes of Pyramids and Cones Archimedes' ratio	109
The volume of a sphere $V = \frac{4}{3} \pi r^3$	110
5 HYPERLINK \l "_Toc388861961" Surface Area Surface area of a sphere	110 110
Surface area of a cone	110
Proof of the formula $S = \pi k r$	111

Mensuration Practice Problems	111
A cylindrical can	111
The volume of a cone	111
A triangular prism	111
Volume and surface area of a pyramid	112
A conical drinking glass	112
The volume of an octahedron and tetrahedron	112
Tricks with Dimensions	113
Making a solid into a straight line Are there too many people on the earth?	113
Stereometry	114
Vocabulary	114
Types of Polyhedra	114
The Platonic Solids	115
The four properties	115
Proof that there are only five Platonic solids	115
Kenler's universe	115
The Transformation of Solids	116
The transformation of solids in the mind	116
The transformation of solids using clay	116
The evolution of solids	116
Transforming a cube into an octahedron	116
Transforming a cube into a dedecabedron	117
Transforming a cube into a rhombic dodecahedron	117
Transforming a dodecahedron into an icosahedron	117
Pushing in the points of a tetrahedron	118
Orthogonal Views	118
Duality	118
Examples of dual solids	118
The Stretching Process	119
The Archimedean Duals	120
Constructing Paper Models	120
The possible nets for a cube and a tetrahedron	120
Tips for constructing paper models	121
Drawing the net	121
Close-Packing	121
Euler's Formula	122
Additional 3-D Transformation Exercises	122
The inner-tube problem	122
Reducing solids to tetrahedrons	122
	123
Key Ideas What is Logi?	123
What is Loci? Why do we teach it?	123
Loci as a main lesson	123
Requirements?	123
The treasure hunt	123
The process is important	123
A Circle Two Porollal Lines	123
Two Concentric Circles	123
A Perpendicular Bisector	123
Two Ångle Bisector	124
A Parabola	124
A parabola in movement	124
An ellipse	120
A Hyperbola	120
A hyperbola in movement	127
The two branches of a hyperbola	128
Alternative Definitions	128
The ellipse	128
Proof of the locus definition of an ellipse The hyperbola	128
Conic Sections	120
What is a section?	129
Conic sections in movement	129

Curves in Movement	130
A family of hyperbolas and ellipses Moving the focus outside the directrix	130
Turning the directrix circle inside-out	132
The Curves of Cassini	133
Formulas and set-up	133
The transformation of a Cassini curve	134
Construction of a Cassini Curve	135
APPENDIX A – DRAWINGS	138
Equiangular Spirals Rotations of Circles	138
The Metamorphosis of a Limaçon	140
□ HYPERLINK \1 "_Toc388862051" Hierarchy of	142
The King's Crown	142
The 24-division with Diagonals	143
Star Patterns with Geometric Division Theorem of Morley	144
The Perspective Reduction of a Figure	146
APPENDIX B – ADVANCED TOPICS	147
Questions regarding Repeating Decimals	147
Lesson Plan for Square Root Algorithm The Volume of an Octahedron and Tetrahedron	148
Proof that there exists only five Platonic solids	155
APPENDIX C – WONDER OF NUMBER	156
Square and Triangular Numbers	156
Sums and Differences Theorems	150
Perfect and Abundant Numbers	159
Euclid's Formula for Perfect Numbers	160
The First 75 Triangular Numbers	161
Powers of Two Table	162
Even Numbers up to 2000 Even Numbers as the Sum of Two Primes	163
Odd Numbers as the Difference of Two Squares	165
Numbers as the Sum of Two Squares	166
APPENDIX D – TABLES & HANDOUTS	167
Sixth Grade Math Tricks Seventh Grade Math Tricks	167
Archimedean Solids and their Duals	169
Patterns for the Archimedean Duals	171
Multiplication Tables for Number Bases	172
Place Value Table	173
ASCII Code Table Binary/Hexadecimal Conversion Table	174
An Algorithm for Addition	175
An Algorithm for Long Division	175
The Square Root Algorithm - without zeroes	170
Table of Squares	178
Growth Rate Table	178
Conversion Table	180
Fourth Grade Assessment Test Sixth Grade Assessment Test	174
Summary of Math Skills	176
SUGGESTED READING	184
SPECIAL SYMBOLS	185
GLOSSARY	185
INDEX	189

Thoughts on Teaching Math

What makes a good math student?

As teachers, we all hope our students will become good at math. But to realize this we need to fully understand what math is, and what it isn't (see *Blind Procedures*, above). So now we ask: What are the key attributes that enable a student to become good at math? Here is my short list:

- *Striving to understand deeply*. We want our students to understand the concepts they encounter. Good math students are never satisfied with going through a procedure without understanding what they are doing.
- *Asking good questions*. Good math students are curious, and wonder "what if...?" They question why something is true, and they become skillful at articulating questions.
- *Making mistakes*. Contrary to what many people think, mistakes are an important part of learning math. Good math students don't let mistakes discourage them. In fact, mistakes can motivate students to find the truth and make mathematical discoveries. We want our students to become comfortable with making mistakes, and to learn from their mistakes.
- *Attitude and work ethic*. This includes many things, such as: enthusiasm, determination, and discipline. Good math students persevere through their challenges; they are determined to succeed.

All of the above shows how our students learn many life lessons through studying mathematics. (And, yes, the same may be said about the proper teaching of other subjects as well.)

What makes a good math teacher?

Many class teachers feel under-confident in their own math skills, and, in some cases, have had traumatic experiences with math when they were in school. Often, this results in the teacher developing an antipathy towards math. However, if such a teacher can find a way to rise above his antipathy toward math, then that teacher may find joy in math, which can result in bringing wonderful math lessons to the students.

This is what I feel makes a good math teacher:

- *Enthusiasm for learning math.* For many teachers, this amounts to finding a new relationship to math. How wonderful it can be to find out that math can be interesting and rewarding!
- *Ability to present the material effectively*. This is the art of teaching.
- *Adequate preparation time for the math lessons*. With everything that is demanded of the class teacher, there often isn't enough time left to prepare adequately for the math lessons.
- A healthy relationship to the students. This helps to create a safe and comfortable learning environment.

Teaching the "Big Topics"

The "big topics" in middle school math are fractions, decimals, percents, ratios, and (simple) algebra. Our students should have these topics mastered before entering high school. There are two common mistakes made with these big topics.

The first is to do *too much too soon*. The topic may have been introduced in a wonderful and effective way, but if we build too much on the new foundation then many of the students may drown. The second mistake is *not enough follow-up and review*. This often happens with percents. It is introduced and practiced (perhaps too much!) in sixth grade, and then the students might never see it again.

So how should percents, for example, be done? It should be introduced in a wonderful sixth grade main lesson – not too much – and kept very simple. Then, one year later, the topic is reviewed and deepened – again being careful that it isn't too much. And then, once again, it is put to sleep. Now the stage has been set for going into depth in eighth grade. A similar three-step plan can be followed with any "big topic". If we want the students to learn something well and permanently, then we need to create a "dance" between introducing, deepening, practicing, sleeping, and reviewing.

Separation of form and number

It is helpful to think of *form* (pure geometry) as having its roots in the physical/material world, and *number* as having its roots in the non-physical world of pure thought. In education today, *form* and *number* are often blended together. This can lead to unnecessary confusion.

There certainly are times when it is appropriate and helpful to integrate numbers into a geometry topic. For example, geometric figures become associated with numbers and algebraic formulas in the study of measurement (e.g., areas and volume). However, we also need to find ways to have our students experience "pure geometry" without attaching formulas and numbers. Waldorf schools do this starting in first grade with

Seventh Grade

The importance of seventh grade

Seventh grade is an important year academically. This is the year when students start to develop abstract thinking (through algebra, physics, essay writing, etc.). It is relatively common for a student to enter seventh grade fairly weak in math, but then to "wake-up" during seventh grade, and, in the end, to enter high school quite strong in math.

The order of topics

My seventh grade workbook (contact Jamie York Press for ordering) allows the students to practice their skills with most of the topics listed here, with a few exceptions (e.g., puzzle problems). The order of the units in my workbook is:

- 1. Arithmetic review
- 4. Percents
- 5. Ratios Part II

- 7. Geometry
- 8. Square Root Algorithm (optional)

- 2. Measurement 3. Ratios Part I
- 6. Rates

- 9. Algebra (for the *algebra* main lesson)

Arithmetic

Review Sixth Grade

- Especially review fractions, decimals, and division (see 6th grade Arithmetic).
- Integrate review into new material, as feasible. •

The World of Numbers

Math Tricks

- Review sixth grade math tricks (see Appendix D).
- Do the seventh grade math tricks (see Appendix D). Introduce perhaps one new trick each week, and work on practicing new ones with old ones during mental arithmetic. (See Introduction, Mental arithmetic.)

Divisibility Rules

- Review sixth grade *Divisibility Rules*, and then do these as well:
 - A number is evenly divisible by 6 only if it is divisible by both 2 and 3. **Example:** 577,368 is evenly divisible by 6 because it is divisible by both 2 and 3.
 - A number is evenly divisible by 8 only if the last 3 digits are divisible by 8. This is because it will • evenly divide into any number of thousands.

Example: 8,736,104 is *not* evenly divisible by 8 because the last three digits aren't divisible by 8.

- A number is evenly divisible by 12 only if it is divisible by both 4 and 3. • **Example:** 57,481,932 is evenly divisible by 12 because it is divisible by both 4 and 3.
- A number is evenly divisible by 11 only if the difference of the sums of every other digit is evenly • divisible by 11.
 - **Example:** With 6.273,905, we get one sum by adding the digits 6, 7, 9, and 5 to get 27. The other sum comes from adding the digits 2, 3, and 0, which gives 5. The difference of the two sums is 27-5, which is 22. And since 22 is evenly divisible by 11, then we can say that the original number 6273905 is also evenly divisible by 11.
 - **Example:** With 378,543 both sums are equal to 15, making the difference equal to zero. Since zero is evenly divisible by 11, then we can say that 378543 is also evenly divisible by 11.
 - **Example:** With 68,479, the two sums are 19 and 15, which have a difference of 4. Therefore, we conclude that 68479 is not evenly divisible by 11.

Area of a Trapezoid

- The formula for calculating the area of a trapezoid $A = \frac{1}{2}H(B_1 + B_2)$ is given in math textbooks, but I don't give it to the students. As a challenge problem, I often ask a student to come up with the formula.
- Have the students find the area of any trapezoid by dividing it into a triangle and a parallelogram (or a rectangle), or into two triangles.

Example: Find the area of the trapezoid shown on the right. Assume all measurements are given in meters.

Solution: We first divide the trapezoid by drawing a line parallel to one side from one of the obtuse angles, as shown in the drawing at the right. We then calculate the area of the parallelogram as its base (9) times its height, which is 4 (not 5!), resulting in an area of $36m^2$. The triangle also has a height of 4, and its base is 8, so its area is $\frac{1}{2}(8)(4)$, which is $16m^2$. The whole trapezoid, therefore, has an area of $36+16 = 52m^2$.

Heron's Formula for the Area of a Triangle

Area $\triangle ABC = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$, where $s = \frac{1}{2}(a+b+c)$ is the semi-perimeter.

- This formula is attributed to the Greek, Heron (fl.≈75A.D.), but it may have been Archimedes that came up with it first.
- Heron's amazing proof of this formula is, for me, the climax of the tenth grade year of studying geometry.
- Before seeing this formula, the students should first be able to calculate the areas of non-right triangles where the base and height are given. (See 7th grade Geometry, *Area*.)
- The beauty of this little-known formula is that you don't need to know the height of the triangle. Without this formula, you would have to use trigonometry (studied in high school) to calculate the height, and it would be more complicated.

Example: Find the area of the triangle that has sides of length 5m, 6m, and 7m.

Solution: The perimeter is 18m, so the semi-perimeter is 9m. Putting all the numbers into the formula, we get: Area = $\sqrt{9(9-5)(9-6)(9-7)}$, which is $\sqrt{9\cdot4\cdot3\cdot2}$, and becomes $\sqrt{216}$. Using the square root algorithm, we get an area of <u>14.70m²</u> (rounded).

Calculating the Area of Four Types of Triangles

- *A right triangle*. We are given the base and the height, so finding the area is easy. **Example:** With the triangle here, the area is: $A=\frac{1}{2}\cdot B\cdot H \rightarrow A=\frac{1}{2}\cdot 20\cdot 21 \rightarrow A=\frac{210 \text{ ft}^2}{2}$
- *An isosceles triangle*. Here, we can use the Pythagorean Theorem in order to calculate the height. We then use this height in order to calculate the area.
 - **Example:** We start with a triangle with one side 20' long and two sides 26' long. To find the height, we cut the triangle in half, which makes a right triangle with sides 26', 10', and H, which is the height of the original triangle. Using the *leg formula* we get:

$$H^2 = 26^2 - 10^2 \rightarrow H^2 = 676 - 100 \rightarrow H^2 = 576 \rightarrow H = 24$$

(We also could have determined H more quickly by using Pythagorean triples.) Now we know that the height of the original triangle is 24. So the area is: $A = 1/(2P_1H) = A = 1/(2P_2A) = A = 240 \text{ ft}^2$

- $A = \frac{1}{2} \cdot B \cdot H \rightarrow A = \frac{1}{2} \cdot 20 \cdot 24 \rightarrow A = \frac{240 \text{ ft}^2}{2}$
- An equilateral triangle. In this case, we could use the same method as described above for the isosceles triangle, but Heron's formula is generally easier.
 - **Example:** With an equilateral triangle that has all sides equal to 10cm, the perimeter is 30cm, so the semi-perimeter (S) is 15. The area of the triangle is then:

• A scalene triangle (each side is different). In this case, we must use Heron's formula. Example: Using Heron's formula with the triangle here, the perimeter is 72', so the semiperimeter (S) is half of 72, which is 36. The area of the triangle is then:

Area = $\sqrt{36 \cdot (36 - 28) \cdot (36 - 24) \cdot (36 - 20)} \rightarrow \sqrt{36 \cdot 8 \cdot 12 \cdot 16} \rightarrow \sqrt{55296} \approx 235.1 \text{ ft}^2$

