Table of Contents

INTRODUCTIONAbout this BookToday's ChallengeThoughts on Teaching MathPractical AdviceWill our Students be Prepared?Tips for Success in Math
MATH CURRICULUM SUMMARY
Sixth Grade 18
Seventh Grade 19
Eighth Grade 20
SIXTH GRADE ARITHMETIC 21
The year for strengthening skills 21
The order of topics 21
The World of Numbers 21
Mental Math 21
Math Tricks 21
New Multiplication Facts 21Casting Out NinesExponents and RootsDivisibility Rules
Prime Factorization
LCMs and GCFsCommon denominators for
DivisionDivision and Fractions23
23Think of division as a fraction
Making the divisor easier 23
Long Division 23
Vocabulary 23
Normal long division 24
Don't leave a remainder 24
How to know if a digit in the answer is too small? 24
An explanation of why long division works 24
Division problems made easier by rounding 25
Short Division 26Checking AnswersFractions26
Fractions aren't just pizza! 26
Fractions are part of the whole 26
Reducing fractions 27
Fractions are division 27
Mixed numbers
Comparing Fractions and DecimalsCompound Fractions27
28Decimals
Review from Fifth Grade 2828
Fraction to Decimal Conversions
Fraction/decimal conversions to memorize 29
The trick for 11 ths, and 20ths 29
Decimal to Fraction Conversions 29
Repeating Decimals 29
Determining number of digits under the repeat bar 29
Division Problems with Repeating Decimals 30
Converting Repeating Decimals to Fractions 30
9, 99, etc. in the denominator 30
90,990 , etc. in the denominator 30
Repeating decimals into fractions 31
Business Math Main Lesson 31
A Few Thoughts on this Unit 31
Keys to Success for Percents 31
Don't rely on pictures 31
Percent to Fraction Conversions 32
Determining a Certain Percent of a Given Number 32
Looking at it as a division problem 321013101118222223

.
SIXTH GRADE GEOMETRYThe Basics40
Basic Geometry Terminology 40
Angle Measure 40
Polygon Terminology 40
Types of triangles 40
Types of quadrilaterals 40
Polygons with more than four sides 40
Circle Terminology 41
The Three Dimensions 41
Geometric Drawing 41
Tips for doing Geometric Drawings 41
Copying a Line Segment 41
Copying an Angle 42
Bisecting a Line Segment 42
Bisecting an Angle 42
A Perpendicular Line through a Point on that Line 43
A Perpend. Line through a Point Not on that Line 43
Constructing a Parallel Line 43
Dividing a Line Segment into Equal Parts 44
Constructing a Triangle, Given One Side 44
Constructing a Square, Given One Side 44
Constructing a Hexagon, Inside a Given Circle 45
Constructing a Square, Inside a Given Circle 45
Constructing a Triangle, Inside a Given Circle 45
Constructing an Octagon, Inside a Given Circle 46
The 12-Division of the Circle 46
The 24-Division of the Circle 46
Spirals 47
The central idea here 47
The Equiangular Spiral 47
Construction 47
Interesting questions 47
Geometric Progressions and the Equiangular Spiral 47
Other Ways to Construct an Equiangular Spiral 47
Formed with inscribed regular polygons 47
Joining the quarter-points of the square's sides 48
The Spiral of Archimedes 48
Advanced Constructions 49
Rotations of Circles 49
The Limacon and the Cardioid 49
The Hierarchy of Quadrilaterals 49
Knots and Interpenetrating polygons 49
The 24-Division with all its Diagonals 49
The King's Crown 49
Area 50
Area of square, rectangle, and right triangle 50
SEVENTH GRADE ARITHMETIC 51
The importance of seventh grade 51
The order of topics 51
The World of Numbers 51
Math Tricks 51
Divisibility Rules 51
Roots 52
Measurement 52
Review 52
The Metric System 52
The metric stairs 52
Conversions in a Given System 52
Percents 53
Finding the Base 53Easier ones
Thinking of inverses53
Trickier ones 53 53
Strange Percents 53
Compound interest 54
Calculating the Percentage of Increase or Decrease 54
Ratios 55
Key Ideas 55
Ratios have no units Ratios of more than two things 55
The Three Thoughts of a Ratio 55
The Two Forms for a Ratio 56
Whole number form 56
Decimal form 56
The Two Tho The Two Thoughts of a Ratio 56
Reciprocals of Ratios
Proportion of the Whole 57
Similar Figures 57
Shadow problems 58
Direct and Inverse Proportions 58
Speed, time, and distance 58
String length and frequency 58
The law of the lever 58
A New Type of Number: Irrational Numbers 59
The Ratio in a Square 59
Guessing the ratio 59
The Great Pythagorean Crisis 59
The Four Ratios of a Square 59
Practice calculating the diagonal or the side 59
π - The Ratio in a Circle 59
The impossibility of measuring 59
Archimedes method for calculating π 59
Decimal approximations for π 60
Fractional approximations for π 60
The Four Ratios of π. 60
Practice calculating the circumference or diameter 60
Repeating Decimals 61
Two laws of repeating decimals 61
Irrational Numbers 61
The Square Root Algorithm 61
The Angles in Polygons other than Triangles 78
Angle Puzzles 78
Theorem of Thales 78
Theorem of Morley 78
Pythagorean Theorem 79
Visual Proofs 79
A cut-out puzzle 79
The case of the isosceles right triangle 79
The case of the 3-4-5 triangle 79
Pythagorean Triples 80
Pythagoras's formula 80Plato's formulaThe Arabian formula
80
The primitive Pythagorean Triples The primitive Pythagorean Triples 80
Calculating Missing Sides of Triangles 80
Other Topics 81
EIGHTH GRADE ARITHMETIC 82
The year before high school 82
The order of topics 82
Main Lessons and Priorities 82
Number Bases 82
Ancient Number Systems 83
Expanded Notation 83
Scientific Notation 83
Base-Eight, Octal 83
Base-Five 84
Base-Sixteen, Hexadecimal 85
Base-Two, Binary 86Arithmetic in Various Bases
87Multiplication tables
The climax of the unit 88
Multiplication with zeroes 88Converting between Binary and HexadecimalThe World of Numbers89
The Square Root Algorithm without zeroes 89
The Pythagorean Theorem 89
The Hypotenuse Formula 89
The Leg Formula 89
Finding the missing sides of right triangles 89
Percents and Growth 90
Calculators 90
Four Ways to Find the Base 90
The Even Multiple Method 90
The Decimal Method 90
The Fraction Method 90
The Algebra Method 90
Increase/Decrease Problems 90
Rewording a percent increase problem 90
Rewording a percent decrease problem 90
Calculating the Percentage of Increase or Decrease 90
Review seventh grade 90
Calculating the Starting Point 91
Exponential and Linear Growth 91
The Exponential Growth Formula 92
The Exponential Growth Table 92
Dramatic results 92
Depreciation 92
The Rule of 72 93
Dimensional Analysis 93
A Few Thoughts on this Unit 93
Calculators 93
Conversion table 93
Accuracy 93
Showing work 93
Two Methods for doing Unit Conversion Problems 93
Using the Intuitive Approach 93
Using the Chain Method 93
Converting between the U.S. and Metric System 94
Converting Units for Rates 94
Converting units of speed 94
Unit cost 94
Inverse ratios and reciprocals 95
Converting Areas and Volumes 95
Grains of rice problem 95
Proportions 97
Shortcuts for Solving Proportions 97
Moving along diagonals 97
Cross multiplying 97
Word Problems that Use Proportions 97
Recipe problems 97
Gas mileage problems 98
Map scale problems 98
Rate problems 98
EIGHTH GRADE ALGEBRA 99
Expressions 99
Order of Operations 99
Evaluating Expressions 99
The Laws of Exponents 100
Fractions and Negatives 100
Equations 100
Use of Equal sign 100
Distributive Property 100
Equations with Fractions 101
Equations with Fractional Constants and Coefficients 10 101Cross Multiplying
Strange Solutions 101
Equations with a solution of $\mathrm{X}=0$ 101
Equations where any value for X will work 101
Equations with no solution 101
Converting Repeating Decimals into Fractions 102
EIGHTH GRADE COMPUTERS 103
Computer memory and ASCII code 103
Binary Codes using Flags 103
A Computer Bit as a Switch 103
One Byte of Memory 103
Decoding Strings of Binary Code 103
Computer Algorithms 104
Writing Familiar Algorithms 104
An algorithm for addition 104
An algorithm for long division 104
Examples of New Algorithms 104
The prime number algorithm 104
The square root algorithm - without zeroes 104
EIGHTH GRADE GEOMETRY 105
Mensuration (Areas and Volumes) 105
Beware of Formulas! 105
The Pythagorean Theorem 105
Von Baravalle's proof 105
Area of a Trapezoid 106
Heron's Formula for the Area of a Triangle 106
Calculating the Area of Four Types of Triangles 106
A right triangle 106
An isosceles triangle 106
An equilateral triangle 106
A scalene triangle 106
Area of a Circle 107
Proof of the formula $A=\pi \cdot r^{2}$ 107
Archimedes' version of the area of a circle 107
Portions of Circles 107
Finding the length of an arc of a circle 107
Finding the area of a segment of a circle 107
The Basics of Volume 108
Cubic Measurement 108
Notation
Mensuration Practice Problems 111
A cylindrical can 111
The volume of a sphere 111
The volume of a cone 111
A triangular prism 111
Volume and surface area of a pyramid 112
A conical drinking glass 112
The volume of an octahedron and tetrahedron 112
Tricks with Dimensions 113
Making a solid into a straight line 113
Are there too many people on the earth? 113
Stereometry 114
Vocabulary 114
Types of Polyhedra 114
The Platonic Solids 115
The four properties 115
Proof that there are only five Platonic solids 115
Plato's Academy 115
Kepler's universe 115
The Transformation of Solids 116
The transformation of solids in the mind 116
The transformation of solids using clay 116The evolution of solids116
Transforming a cube into an octahedron 116
Transforming a cube into a tetrahedron 117
Transforming a cube into a dodecahedron 117
Transforming a cube into a rhombic dodecahedron 17
Transforming a dodecahedron into an icosahedron 117
Pushing in the points of a tetrahedron 118
Orthogonal Views 118
Duality 118
Examples of dual solids 118
The Archimedean Solids 119
The Stretching Process 119
The Archimedean Duals 120
Constructing Paper Models 120
The possible nets for a cube and a tetrahedron 120
Tips for constructing paper models 121
Drawing the net 121
Putting it together 121
Close-Packing 122
Euler's Formula 122
Additional 3-D Transformation Exercises 122
The inner-tube problem 122
Reducing solids to tetrahedrons 122
Loci 123
Key Ideas 123
What is Loci? 123
Why do we teach it? 123
Loci as a main lesson 123
Requirements? 123
The treasure hunt 123
The process is important 123
A Circle 123
Two Parallel Lines 123
Two Concentric Circles 123
A Perpendicular Bisector 123
Two Angle Bisector 124
A Parabola 124
A parabola in movement 124
An Ellipse 126
An ellipse in movement 126
A Hyperbola 127
A hyperbola in movement 127
The two branches of a hyperbola 128
Alternative Definitions 128
The ellipse 128
Proof of the locus definition of an ellipse 128
The hyperbola 128
Conic Sections 129
What is a section? 129
Conic sections in movement 129
Conic sections from cones of light 30
Curves in Movement 130
A family of hyperbolas and ellipses 130
Moving the focus outside the directrix 131
inside-out 132
The Curves of Cassini 133
What is a cassini curve? 133
Formulas and set-up 133
The transformation of a Cassini curve 134
Construction of a Cassini Curve 135
APPENDIX A - DRAWINGS 138
Equiangular Spirals 138
Rotations of Circles 139
The Metamorphosis of a Limaçon 140
Knots and Interpenetrating polygons 142
The King's Crown 143
The 24-division with Diagonals 143
Star Patterns with Geometric Division 144
Theorem of Morley 145
The Perspective Reduction of a Figure 146
APPENDIX B - ADVANCED TOPICS 147
Questions regarding Repeating Decimals 147
Lesson Plan for Square Root Algorithm 148
The Volume of an Octahedron and Tetrahedron 153
Proof that there exists only five Platonic solids 155
APPENDIX C - WONDER OF NUMBER 156
Square and Triangular Number 156
Perfect, Abundant and Deficient Numbers 156
Sums and Differences Theorems 157
Perfect and Abundant Numbers 159
Euclid's Formula for Perfect Numbers 160
The First 100 Square Numbers 161
The First 75 Triangular Numbers 161
Powers of Two Table 162
Prime Numbers up to 2000 163
Even Numbers as the Sum of Two Primes 164
Odd Numbers as the Difference of Two Squares 165
Numbers as the Sum of Two Squares 166
APPENDIX D - TABLES \& HANDOUTS 167
Sixth Grade Math Tricks 167
Seventh Grade Math Tricks 168
Archimedean Solids and their Duals 169
Patterns for the Archimedean Duals 171
π to 5000 Decimal Places 172
Multiplication Tables for Number Bases 173
Place Value Table 173
ASCII Code Table 174
Binary/Hexadecimal Conversion Table 174
An Algorithm for Addition 175
An Algorithm for Long Division 175
An Algorithm for Prime Numbers 176
The Square Root Algorithm - without zeroes 177
Table of Squares 178
Table of Square Roots 178
Growth Rate Table 179
Conversion Table 180
Fourth Grade Assessment Test 174
Sixth Grade Assessment Test 175
Summary of Math Skills 176
SUGGESTED READING 184

Thoughts on Teaching Math

What makes a good math student?

As teachers, we all hope our students will become good at math. But to realize this we need to fully understand what math is, and what it isn't (see Blind Procedures, above). So now we ask: What are the key attributes that enable a student to become good at math? Here is my short list:

- Striving to understand deeply. We want our students to understand the concepts they encounter. Good math students are never satisfied with going through a procedure without understanding what they are doing.
- Asking good questions. Good math students are curious, and wonder "what if...?" They question why something is true, and they become skillful at articulating questions.
- Making mistakes. Contrary to what many people think, mistakes are an important part of learning math. Good math students don't let mistakes discourage them. In fact, mistakes can motivate students to find the truth and make mathematical discoveries. We want our students to become comfortable with making mistakes, and to learn from their mistakes.
- Attitude and work ethic. This includes many things, such as: enthusiasm, determination, and discipline. Good math students persevere through their challenges; they are determined to succeed.
All of the above shows how our students learn many life lessons through studying mathematics. (And, yes, the same may be said about the proper teaching of other subjects as well.)

What makes a good math teacher?

Many class teachers feel under-confident in their own math skills, and, in some cases, have had traumatic experiences with math when they were in school. Often, this results in the teacher developing an antipathy towards math. However, if such a teacher can find a way to rise above his antipathy toward math, then that teacher may find joy in math, which can result in bringing wonderful math lessons to the students.

This is what I feel makes a good math teacher:

- Enthusiasm for learning math. For many teachers, this amounts to finding a new relationship to math. How wonderful it can be to find out that math can be interesting and rewarding!
- Ability to present the material effectively. This is the art of teaching.
- Adequate preparation time for the math lessons. With everything that is demanded of the class teacher, there often isn't enough time left to prepare adequately for the math lessons.
- A healthy relationship to the students. This helps to create a safe and comfortable learning environment.

Teaching the "Big Topics"

The "big topics" in middle school math are fractions, decimals, percents, ratios, and (simple) algebra. Our students should have these topics mastered before entering high school. There are two common mistakes made with these big topics.

The first is to do too much too soon. The topic may have been introduced in a wonderful and effective way, but if we build too much on the new foundation then many of the students may drown. The second mistake is not enough follow-up and review. This often happens with percents. It is introduced and practiced (perhaps too much!) in sixth grade, and then the students might never see it again.

So how should percents, for example, be done? It should be introduced in a wonderful sixth grade main lesson - not too much - and kept very simple. Then, one year later, the topic is reviewed and deepened - again being careful that it isn't too much. And then, once again, it is put to sleep. Now the stage has been set for going into depth in eighth grade. A similar three-step plan can be followed with any "big topic". If we want the students to learn something well and permanently, then we need to create a "dance" between introducing, deepening, practicing, sleeping, and reviewing.

Separation of form and number

It is helpful to think of form (pure geometry) as having its roots in the physical/material world, and number as having its roots in the non-physical world of pure thought. In education today, form and number are often blended together. This can lead to unnecessary confusion.

There certainly are times when it is appropriate and helpful to integrate numbers into a geometry topic. For example, geometric figures become associated with numbers and algebraic formulas in the study of measurement (e.g., areas and volume). However, we also need to find ways to have our students experience "pure geometry" without attaching formulas and numbers. Waldorf schools do this starting in first grade with

Seventh Grade

The importance of seventh grade

Seventh grade is an important year academically. This is the year when students start to develop abstract thinking (through algebra, physics, essay writing, etc.). It is relatively common for a student to enter seventh grade fairly weak in math, but then to "wake-up" during seventh grade, and, in the end, to enter high school quite strong in math.

The order of topics

My seventh grade workbook (contact Jamie York Press for ordering) allows the students to practice their skills with most of the topics listed here, with a few exceptions (e.g., puzzle problems). The order of the units in my workbook is:

1. Arithmetic review
2. Percents
3. Ratios Part II
4. Rates
5. Geometry
6. Square Root Algorithm (optional)
7. Algebra (for the algebra main lesson)

Arithmetic

Review Sixth Grade

- Especially review fractions, decimals, and division (see $\mathbf{6}^{\text {th }}$ grade Arithmetic).
- Integrate review into new material, as feasible.

The World of Numbers

Math Tricks

- Review sixth grade math tricks (see Appendix D).
- Do the seventh grade math tricks (see Appendix D). Introduce perhaps one new trick each week, and work on practicing new ones with old ones during mental arithmetic. (See Introduction, Mental arithmetic.)

Divisibility Rules

- Review sixth grade Divisibility Rules, and then do these as well:
- A number is evenly divisible by 6 only if it is divisible by both 2 and 3 .

Example: 577,368 is evenly divisible by 6 because it is divisible by both 2 and 3 .

- A number is evenly divisible by 8 only if the last 3 digits are divisible by 8 . This is because it will evenly divide into any number of thousands.
Example: $8,736,104$ is not evenly divisible by 8 because the last three digits aren't divisible by 8 .
- A number is evenly divisible by 12 only if it is divisible by both 4 and 3 .

Example: $57,481,932$ is evenly divisible by 12 because it is divisible by both 4 and 3 .

- A number is evenly divisible by 11 only if the difference of the sums of every other digit is evenly divisible by 11 .
Example: With 6,273,905, we get one sum by adding the digits 6, 7, 9, and 5 to get 27. The other sum comes from adding the digits 2,3 , and 0 , which gives 5 . The difference of the two sums is $27-5$, which is 22 . And since 22 is evenly divisible by 11 , then we can say that the original number 6273905 is also evenly divisible by 11 .
Example: With 378,543 both sums are equal to 15 , making the difference equal to zero. Since zero is evenly divisible by 11 , then we can say that 378543 is also evenly divisible by 11 .
Example: With 68,479 , the two sums are 19 and 15 , which have a difference of 4 . Therefore, we conclude that 68479 is not evenly divisible by 11 .

Area of a Trapezoid

- The formula for calculating the area of a trapezoid $A=1 / 2 H\left(B_{1}+B_{2}\right)$ is given in math textbooks, but I don't give it to the students. As a challenge problem, I often ask a student to come up with the formula.
- Have the students find the area of any trapezoid by dividing it into a triangle and a parallelogram (or a rectangle), or into two triangles.
Example: Find the area of the trapezoid shown on the right. Assume all measurements are given in meters.
Solution: We first divide the trapezoid by drawing a line parallel to one side from one of the obtuse angles, as shown in the drawing at the right. We then calculate the area of the parallelogram as its base (9) times its height, which is 4 (not $5!$), resulting in an area of $36 \mathrm{~m}^{2}$. The triangle also has a height of 4 , and its base is 8 , so its area is $1 / 2(8)(4)$, which is $16 \mathrm{~m}^{2}$. The whole trapezoid, therefore, has an area of $36+16=52 \mathrm{~m}^{2}$.

Heron's Formula for the Area of a Triangle

Area $\Delta \mathbf{A B C}=\sqrt{\mathbf{s} \cdot(\mathbf{s}-\mathbf{a}) \cdot(\mathbf{s}-\mathbf{b}) \cdot(\mathbf{s - c})}$, where $\mathrm{s}=1 / 2(\mathrm{a}+\mathrm{b}+\mathrm{c})$ is the semi-perimeter.

- This formula is attributed to the Greek, Heron (fl. $\approx 75 \mathrm{~A} . \mathrm{D}$.), but it may have been Archimedes that came up with it first.
- Heron's amazing proof of this formula is, for me, the climax of the tenth grade year of studying geometry.
- Before seeing this formula, the students should first be able to calculate the areas of non-right triangles where the base and height are given. (See $7^{\text {th }}$ grade Geometry, Area.)
- The beauty of this little-known formula is that you don't need to know the height of the triangle. Without this formula, you would have to use trigonometry (studied in high school) to calculate the height, and it would be more complicated.
Example: Find the area of the triangle that has sides of length $5 \mathrm{~m}, 6 \mathrm{~m}$, and 7 m .
Solution: The perimeter is 18 m , so the semi-perimeter is 9 m . Putting all the numbers into the formula, we get: Area $=\sqrt{9(9-5)(9-6)(9-7)}$, which is $\sqrt{9 \cdot 4 \cdot 3 \cdot 2}$, and becomes $\sqrt{216}$. Using the square root algorithm, we get an area of $14.70 \mathrm{~m}^{2}$ (rounded).

Calculating the Area of Four Types of Triangles

- A right triangle. We are given the base and the height, so finding the area is easy.

Example: With the triangle here, the area is: $\mathrm{A}=1 / 2 \cdot \mathrm{~B} \cdot \mathrm{H} \rightarrow \mathrm{A}=1 / 2 \cdot 20 \cdot 21 \rightarrow \mathrm{~A}=\underline{210 \mathrm{ft}^{2}}$

- An isosceles triangle. Here, we can use the Pythagorean Theorem in order to calculate the height. We then use this height in order to calculate the area.
Example: We start with a triangle with one side 20 ' long and two sides 26 ' long. To find the height, we cut the triangle in half, which makes a right triangle with sides 26 ', 10^{\prime}, and H , which is the height of the original triangle. Using the leg formula we get:
$\mathrm{H}^{2}=26^{2}-10^{2} \rightarrow \mathrm{H}^{2}=676-100 \quad \rightarrow \quad \mathrm{H}^{2}=576 \quad \rightarrow \quad \mathrm{H}=24$
(We also could have determined H more quickly by using Pythagorean triples.)

Now we know that the height of the original triangle is 24 . So the area is:
$\mathrm{A}=1 / 2 \cdot \mathrm{~B} \cdot \mathrm{H} \rightarrow \mathrm{A}=1 / 2 \cdot 20 \cdot 24 \rightarrow \mathrm{~A}=\underline{240 \mathrm{ft}^{2}}$

- An equilateral triangle. In this case, we could use the same method as described above
for the isosceles triangle, but Heron's formula is generally easier.
Example: With an equilateral triangle that has all sides equal to 10 cm , the perimeter is 30 cm , so the semi-perimeter (S) is 15 . The area of the triangle is then:

Area $=\sqrt{15 \cdot(15-10) \cdot(15-10) \cdot(15-10)} \rightarrow \sqrt{15 \cdot 5 \cdot 5 \cdot 5} \rightarrow \sqrt{3 \cdot 5^{2} \cdot 5^{2}} \rightarrow 5 \cdot 5 \cdot \sqrt{3} \rightarrow 25 \cdot(1.73) \approx 43.25 \mathrm{~cm}^{2}$

- A scalene triangle (each side is different). In this case, we must use Heron's formula.

Example: Using Heron's formula with the triangle here, the perimeter is 72', so the semiperimeter (S) is half of 72 , which is 36 . The area of the triangle is then:
Area $=\sqrt{36 \cdot(36-28) \cdot(36-24) \cdot(36-20)} \rightarrow \sqrt{36 \cdot 8 \cdot 12 \cdot 16} \rightarrow \sqrt{55296} \approx 235.1 \mathrm{ft}^{2}$

